Inverse analysis in material characterization

Monday, 29. August 2016.

9.00 - 12.30 Classroom 1A

*Introduction to inverse problems

*Different types of inverse problems. Setting up an inverse operator

*Parameter identification problems through inverse analysis

*Sensitivity analysis. Different types of ill-posedness. Optimization of experimental setup.

Tuesday, 30. August 2016.

9.00 - 12.30 Classroom PC Est - PC Ovest

*Numerical optimization algorithms for deterministic inverse problems. Least squares problems

*Gradient based methods. Line search methods.

*Family of Trust Region methods.

*Strongly non-convex objective functions. Minimization through soft computing techniques.

Wednesday, 31. August 2016.

9.00 - 12.30 Classroom 1A

*Setting an automatic procedure for parameter characterization centered on minimization of the objective function.

*Practical MATLAB implementation of selected optimization algorithms.

*Interfacing ABAQUS with MATLAB for fully automatic inverse analysis procedures.

Thursday, 1. September 2016.

9.00 - 12.30 Classroom PC Est - PC Ovest

*Inverse analysis in structural mechanics: practical exercises of material parameter assessments through inverse analysis: different case studies.

*Assessment of different types of measuring errors: a deterministic approach.

*Introduction to stochastic inverse analysis: Monte Carlo methods.

*Kalman filets for stochastic inverse analysis.

Friday, 2. September 2016.

9.00 – 12.30 Classroom 1A

*Modern trends in inverse analysis: reduced basis models and neural networks.

* Proper Orthogonal Decomposition and Radial Basis function interpolation for fast simulation of non-linear systems.

* Uniform space filling techniques. Latin hypercube. Dynamic interaction node method.

* POD - RBF method for real time simulations within inverse analysis.